Greed and Majorization
نویسندگان
چکیده
We present a straightforward linear algebraic model of greed, based only on extensions of classical majorization and convexity theory. This gives an alternative to other models of greedy-solvable problems such as matroids, greedoids, submodular functions, etc., and it is able to express established examples of greedy-solvable optimization problems that they cannot. The linear algebraic approach is also much closer in spirit to established practice in operations research and numerical optimization. The essence of the approach is to modeìexchanges' with certain linear transformations. Modeling solutions as vectors also, we then exploit the fact that these exchanges deene an ordering on solutions. When the exchanges are doubly-stochastic matrices, this ordering is the majorization ordering developed by Hardy, Littlewood, and PP olya in their pioneering work on inequality theory. We generalize majoriza-tion to permit any matrix semigroup of exchanges, but nd that several kinds of stochastic matrices make particularly useful families of exchanges. We also show that greedy-solvable problems can be formalized as optimization problems in which the objective preserves an exchange ordering (i.e., is monotone with respect to it). We outline greedy algorithms for such problems, including those that exploit additional properties of the objective, such as convexity or submodularity. Examples from the literature illustrate how several well-known applications of greed can be expressed.
منابع مشابه
Inequality's Arrow: The Role of Greed and Order in Genetic Algorithms
Moderated greedy search is based on the idea that it is helpful for greedy search algorithms to make non-optimal choices “once in a while.” This notion can be made precise by using the majorizationtheoretic approach to greedy algorithms. Majorization is the study of pre-orderings induced by doubly stochastic matrices. A majorization operator when applied to a distribution makes it “less unequal...
متن کاملLinear preservers of g-row and g-column majorization on M_{n,m}
Let A and B be n × m matrices. The matrix B is said to be g-row majorized (respectively g-column majorized) by A, if every row (respectively column) of B, is g-majorized by the corresponding row (respectively column) of A. In this paper all kinds of g-majorization are studied on Mn,m, and the possible structure of their linear preservers will be found. Also all linear operators T : Mn,m ---> Mn...
متن کاملLatin-majorization and its linear preservers
In this paper we study the concept of Latin-majorizati-\on. Geometrically this concept is different from other kinds of majorization in some aspects. Since the set of all $x$s Latin-majorized by a fixed $y$ is not convex, but, consists of union of finitely many convex sets. Next, we hint to linear preservers of Latin-majorization on $ mathbb{R}^{n}$ and ${M_{n,m}}$.
متن کاملSGLT-MAJORIZATION ON Mn,m AND ITS LINEAR PRESERVERS
A matrix R is said to be g-row substochastic if Re ≤ e. For X, Y ∈ Mn,m, it is said that X is sglt-majorized by Y , X ≺sglt Y , if there exists an n-by-n lower triangular g-row substochastic matrix R such that X = RY . This paper characterizes all (strong) linear preservers and strong linear preservers of ≺sglt on Rn and Mn,m, respectively.
متن کاملOn Linear Maps Preserving g-Majorization from Fn to Fm
Let F and Fm be the usual spaces of n-dimensional column and m-dimensional row vectors on F, respectively, where F is the field of real or complex numbers. In this paper, the relations gsmajorization, lgw-majorization, and rgw-majorization are considered on F and Fm. Then linear maps T : F → F preserving lgw-majorization or gs-majorization and linear maps S : Fn → Fm, preserving rgw-majorizatio...
متن کامل